Nanoscale Local Contacts Enable Inverted Inorganic Perovskite Solar Cells with 20.8 % Efficiency

Author:

Wang Sanlong1,Qi Shanshan1,Sun Hongrui1,Wang Pengyang1,Zhao Ying1,Zhang Xiaodan1ORCID

Affiliation:

1. Institute of Photoelectronic Thin Film Devices and Technology Renewable Energy Conversion and Storage Center National Key Laboratory of Photovoltaic Materials and Solar Cells Nankai University Tianjin China 300350

Abstract

AbstractInorganic perovskite solar cells (IPSCs) have gained significant attention due to their excellent thermal stability and suitable band gap (~1.7 eV) for tandem solar cell applications. However, the defect‐induced non‐radiative recombination losses, low charge extraction efficiency, energy level mismatches, and so on render the fabrication of high‐efficiency inverted IPSCs remains challenging. Here, the use of 3‐amino‐5‐bromopyridine‐2‐formamide (ABF) in methanol was dynamically spin‐coated on the surface of CsPbI2.85Br0.15 film, which facilitates the limited etching of defect‐rich subsurface layer, resulting in the formation of vertical PbI2 nanosheet structures. This enabled localized contacts between the perovskite film and the electron transport layer, suppress the recombination of electron‐hole and beneficial to electron extraction. Additionally, the C=O and C=N groups in ABF effectively passivated the undercoordinated Pb2+ at grain boundaries and on the surface of CsPbI2.85Br0.15 film. Eventually, we achieved a champion efficiency of 20.80 % (certified efficiency of 20.02 %) for inverted IPSCs with enhanced stability, which is the highest value ever reported to date. Furthermore, we successfully prepared p‐i‐n type monolithic inorganic perovskite/silicon tandem solar cells (IPSTSCs) with an efficiency of 26.26 %. This strategy provided both fast extraction and efficient passivation at the electron‐selective interface.

Funder

National Key Research and Development Program of China

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3