Recent Developments on Understanding Charge Transfer in Molecular Electron Donor‐Acceptor Systems

Author:

Chen Xi1ORCID,Zhang Xue1ORCID,Xiao Xiao1ORCID,Wang Zhijia2ORCID,Zhao Jianzhang13ORCID

Affiliation:

1. State Key Laboratory of Fine Chemicals Frontier Science Center for Smart Materials School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China

2. Department of Chemistry Capital Normal University Beijing 100048 P. R. China

3. State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830017 P. R. China

Abstract

AbstractCharge transfer (CT) in molecular electron donor‐acceptor systems is pivotal for artificial photosynthesis, photocatalysis, photovoltaics and fundamental photochemistry. We summarized the recent development in study of CT and discussed its application in thermally activated delayed fluorescence (TADF) emitters. The direct experimental proof of the spin multiplicity of the charge separated (CS) state with pulsed laser excited time‐resolved electron paramagnetic resonance (TREPR) spectroscopy was discussed. Experimental determination of the electron exchange energy (J) of the CS state, with magnetic field effect on its yield or lifetime was introduced. The electron spin transfer accompanying the CT, studied with pulsed EPR spectra was briefly discussed. Tuning of the CT yield and kinetics with selective vibration excitation of the linker (the bridge) with IR pulse was presented. Above all, these studies show that there are more fun than simply monitoring the formation of the cations and anions and the kinetics or CS yields in this area.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3