Affiliation:
1. State Key Laboratory of Polymer Physics and Chemistry Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
2. University of Chinese Academy of Sciences Beijing 100049 China
3. School of Physics State Key Laboratory of Crystal Materials Shandong University Jinan Shandong 250100 China
4. State Key Laboratory of Photovoltaic Science and Technology, Trina Solar Changzhou 213000 China
Abstract
AbstractIn the field of organic photovoltaics (OPVs), significant progress has been made in tailoring molecular structures to enhance the open‐circuit voltage and the short‐circuit current density. However, there remains a crucial gap in the development of coordinated material design strategies focused on improving the fill factor (FF). Here, we introduce a molecular design strategy that incorporates electrostatic potential fluctuation to design organic photovoltaic materials. By reducing the fluctuation amplitude of IT‐4F, we synthesized a new acceptor named ITOC6‐4F. When using PBQx‐TF as a donor, the ITOC6‐4F‐based cell shows a markedly low recombination rate constant of 0.66×10−14 cm3 s−1 and demonstrates an outstanding FF of 0.816, both of which are new records for binary OPV cells. Also, we find that a small fluctuation amplitude could decrease the energetic disorder of OPV cells, reducing energy loss. Finally, the ITOC6‐4F‐based cell creates the highest efficiency of 16.0 % among medium‐gap OPV cells. Our work holds a vital implication for guiding the design of high‐performance OPV materials.
Funder
National Natural Science Foundation of China
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献