Affiliation:
1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Changchun 130012 P. R. China
2. International Center of Future Science Jilin University Changchun 130012 P. R. China
Abstract
AbstractLi‐N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low activity and poor stability of cathode catalysts, the electrochemical performance of Li‐N2 batteries is suboptimal, and their electrochemical reversibility has rarely been proven. In this study, a novel bifunctional photo‐assisted Li‐N2 battery system was established by employing a plasmonic Au nanoparticles (NPs)‐modified defective carbon nitride (Au‐Nv‐C3N4) photocathode. The Au‐Nv‐C3N4 exhibits strong light‐harvesting, N2 adsorption, and N2 activation abilities, and the photogenerated electrons and hot electrons are remarkably beneficial for accelerating the discharge and charge reaction kinetics. These advantages enable the photo‐assisted Li‐N2 battery to achieve a low overpotential of 1.32 V, which is the lowest overpotential reported to date, as well as superior rate capability and prolonged cycle stability (≈500 h). Remarkably, a combination of theoretical and experimental results demonstrates the high reversibility of the photo‐assisted Li‐N2 battery. The proposed novel strategy for developing efficient cathode catalysts and fabricating photo‐assisted battery systems breaks through the overpotential bottleneck of Li‐N2 batteries, providing important insights into the mechanism underlying N2 fixation and storage.
Funder
National Natural Science Foundation of China
Higher Education Discipline Innovation Project
Fundamental Research Funds for the Central Universities