Electrochemically Mediated Atom Transfer Radical Polymerization Driven by Alternating Current

Author:

De Bon Francesco1ORCID,Fantin Marco2ORCID,Pereira Vanessa A.1,Lourenço Bernardino Teresa J.1,Serra Armenio C.1,Matyjaszewski Krzysztof3,Coelho Jorge F. J.14

Affiliation:

1. Centre for Mechanical Engineering, Materials and Processes (CEMMPRE) ARISE Department of Chemical Engineering University of Coimbra Rua Sílvio Lima, Pólo II 3030-790 Coimbra Portugal

2. Department of Chemical Sciences University of Padova Via Marzolo 1 I-35131 Padova Italy

3. Department of Chemistry Carnegie Mellon University 4400 Fifth Ave 15213 Pittsburgh PA USA

4. IPN Instituto Pedro Nunes Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia Rua Pedro Nunes 3030-199 Coimbra Portugal

Abstract

AbstractAlternating current (AC) and pulsed electrolysis are gaining traction in electro(organic) synthesis due to their advantageous characteristics. We employed AC electrolysis in electrochemically mediated Atom Transfer Radical Polymerization (eATRP) to facilitate the regeneration of the activator CuI complex on Cu0 electrodes. Additionally, Cu0 served as a slow supplemental activator and reducing agent (SARA ATRP), enabling the activation of alkyl halides and the regeneration of the CuI activator through a comproportionation reaction. We harnessed the distinct properties of Cu0 dual regeneration, both chemical and electrochemical, by employing sinusoidal, triangular, and square‐wave AC electrolysis alongside some of the most active ATRP catalysts available. Compared to linear waveform (DC electrolysis) or SARA ATRP (without electrolysis), pulsed and AC electrolysis facilitated slightly faster and more controlled polymerizations of acrylates. The same AC electrolysis conditions could successfully polymerize eleven different monomers across different mediums, from water to bulk. Moreover, it proved effective across a spectrum of catalyst activity, from low‐activity Cu/2,2‐bipyridine to highly active Cu complexes with substituted tripodal amine ligands. Chain extension experiments confirmed the high chain‐end fidelity of the produced polymers, yielding functional and high molecular‐weight block copolymers. SEM analysis indicated the robustness of the Cu0 electrodes, sustaining at least 15 consecutive polymerizations.

Funder

Fundação para a Ciência e a Tecnologia

Università degli Studi di Padova

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3