PolyBorylated Alkenes as Energy‐Transfer Reactive Groups: Access to Multi‐Borylated Cyclobutanes Combined with Hydrogen Atom Transfer Event

Author:

Hanania Nicole1,Eghbarieh Nadim1ORCID,Masarwa Ahmad1ORCID

Affiliation:

1. Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and Casali Center for Applied Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel

Abstract

AbstractWhile polyborylated alkenes are being recognized for their elevated status as highly valuable reagents in modern organic synthesis, allowing efficient access to a diverse array of transformations, including the formation of C−C and C‐heteroatom bonds, their potential as energy‐transfer reactive groups has remained unexplored. Yet, this potential holds the key to generating elusive polyborylated biradical species, which can be captured by olefins, thereby leading to the construction of new highly‐borylated scaffolds. Herein, we report a designed energy‐transfer strategy for photosensitized [2+2]‐cycloadditions of poly‐borylated alkenes with various olefins enabling the regioselective synthesis of diverse poly‐borylated cyclobutane motifs, including the 1,1‐di‐, 1,1,2‐tri‐, and 1,1,2,2‐tetra‐borylated cyclobutanes. In fact, these compounds belong to a family that presently lacks efficient synthetic pathways. Interestingly, when α‐methylstyrene was used, the reaction involves an interesting 1,5‐hydrogen atom transfer (HAT). Mechanistic deuterium‐labeling studies have provided insight into the outcome of 1,5‐hydrogen atom transfer process. In addition, the polyborylated cyclobutanes are then demonstrated to be useful in selective oxidation processes resulting in the formation of cyclobutanones and γ‐lactones.

Funder

Israel Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3