Predicting Highly Enantioselective Catalysts Using Tunable Fragment Descriptors**

Author:

Tsuji Nobuya1ORCID,Sidorov Pavel1ORCID,Zhu Chendan2ORCID,Nagata Yuuya1ORCID,Gimadiev Timur1ORCID,Varnek Alexandre13ORCID,List Benjamin12ORCID

Affiliation:

1. Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo 001-0021 Japan

2. Max-Planck-Institut für Kohlenforschung 45470 Mülheim an der Ruhr Germany

3. Laboratory of Chemoinformatics, UMR 7140, CNRS University of Strasbourg 67081 Strasbourg France

Abstract

AbstractCatalyst optimization processes typically rely on inductive and qualitative assumptions of chemists based on screening data. While machine learning models using molecular properties or calculated 3D structures enable quantitative data evaluation, costly quantum chemical calculations are often required. In contrast, readily available binary fingerprint descriptors are time‐ and cost‐efficient, but their predictive performance remains insufficient. Here, we describe a machine learning model based on fragment descriptors, which are fine‐tuned for asymmetric catalysis and represent cyclic or polyaromatic hydrocarbons, enabling robust and efficient virtual screening. Using training data with only moderate selectivities, we designed theoretically and validated experimentally new catalysts showing higher selectivities in a challenging asymmetric tetrahydropyran synthesis.

Funder

Deutsche Forschungsgemeinschaft

H2020 European Research Council

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3