Switching from Thermally Activated Delayed Fluorescence in Single Crystals for Low‐Threshold Laser to Room‐temperature Phosphorescence in Amorphous‐Film for Highly Efficient OLEDs

Author:

Gong Hao1,Song Yixing1,He Jingping1,Wang Ping1,Xiang Yuhao1,Li Shuai2,Yao Jiannian2,Liao Bo3,Liao Qing1ORCID,Fu Hongbing13ORCID

Affiliation:

1. Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China

2. College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang Henan 473061 P. R. China

3. School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan Hunan 411201 P. R. China

Abstract

AbstractMetal‐organic phosphorescent complexes containing Ir or Pt are work horse in organic light‐emitting diode (OLED) technology, which can harvest both singlet and triplet excitons in electroluminescence (EL) owing to strong heavy‐atom effect. Recently, organic room‐temperature phosphorescence (ORTP) have achieved high photoluminescence quantum yield (PLQY) in rigid crystalline state, which, however, is unsuitable for OLED fabrication, therefore leading to an EL efficiency far low behind those of metal‐organic phosphorescent complexes. Here, we reported a luminescence mechanism switch from thermally activated delayed fluorescence (TADF) in single crystal microwires to ORTP in amorphous thin‐films, based on a tert‐butylcarbazole difluoroboron β‐diketonate derivative of DtCzBF2. Tightly packed and well‐faceted single‐crystal microwires exhibit aggregation induced emission (AIE), enabling TADF microlasers at 473 nm with an optical gain coefficient as high as 852 cm−1. In contrast, loosely packed dimers of DtCzBF2 formed in guest‐host amorphous thin‐films decrease the oscillator strength of fluorescence transition but stabilize triplets for ORTP with a PLQY up to 61 %, leading to solution‐processed OLEDs with EQE approaching 20 %. This study opens possibilities of low‐cost ORTP emitters for high performance OLEDs and future low‐threshold electrically injected organic semiconductor lasers (OSLs).

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3