Hierarchical Self‐Assembly of Multidimensional Functional Materials from Sequence‐Defined Peptoids

Author:

Shao Li12ORCID,Hu Dehong3,Zheng Shao‐Liang4,Trinh Thi Kim Hoang2,Zhou Wenhao5,Wang Haoyu6,Zong Yanxu27,Li Changning26,Chen Chun‐Long26ORCID

Affiliation:

1. Department of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China

2. Physical Sciences Division Pacific Northwest National Laboratory Richland WA 99354 USA

3. Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99354 USA

4. Department of Chemistry and Chemical Biology Harvard University Cambridge MA 02138 USA

5. Department of Materials Science University of Washington Seattle WA 98195 USA

6. Department of Chemical Engineering University of Washington Seattle WA 98195 USA

7. Materials Science and Engineering Binghamton University Binghamton NY 13902 USA

Abstract

AbstractHierarchical self‐assembly represents a powerful strategy for the fabrication of functional materials across various length scales. However, achieving precise formation of functional hierarchical assemblies remains a significant challenge and requires a profound understanding of molecular assembly interactions. In this study, we present a molecular‐level understanding of the hierarchical assembly of sequence‐defined peptoids into multidimensional functional materials, including twisted nanotube bundles serving as a highly efficient artificial light harvesting system. By employing synchrotron‐based powder X‐ray diffraction and analyzing single crystal structures of model compounds, we elucidated the molecular packing and mechanisms underlying the assembly of peptoids into multidimensional nanostructures. Our findings demonstrate that incorporating aromatic functional groups, such as tetraphenyl ethylene (TPE), at the termini of assembling peptoid sequences promotes the formation of twisted bundles of nanotubes and nanosheets, thus enabling the creation of a highly efficient artificial light harvesting system. This research exemplifies the potential of leveraging sequence‐defined synthetic polymers to translate microscopic molecular structures into macroscopic assemblies. It holds promise for the development of functional materials with precisely controlled hierarchical structures and designed functions.

Funder

U.S. Department of Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3