Affiliation:
1. School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
2. Department of Chemistry Virginia Tech Blacksburg VA 24060 USA
Abstract
AbstractSupramolecular polymer networks (SPNs) demonstrate great potential in the development of smart materials owing to their attractive dynamic properties. However, as they suffer from the inherent weak bonding of most noncovalent cross‐links, it remains a significant challenge to construct SPNs with outstanding mechanical performance. Herein, we exploit the cryptand/paraquat host‐guest recognition motifs as cross‐links to prepare a class of highly strong and tough SPNs. Unlike those supramolecular cross‐links with relatively weak binding abilities, the cryptand‐based host‐guest interactions have a high association constant and steady complexing structure, which effectively stabilizes the network and resists mechanical deformation under external force. Such favorable structural stability endows our SPNs with greatly enhanced mechanical performance, compared with the control‐1 cross‐linked by the weakly complexed crown ether/secondary ammonium salt motif (tensile strength: 21.1±0.5 vs 2.8±0.1 MPa; Young's modulus: 102.6±4.8 vs 2.1±0.3 MPa; toughness: 90.4±2.0 vs 10.8±0.6 MJ m−3). Moreover, our SPNs also retain abundant dynamic properties including good abilities in energy dissipation, reprocessability, and stimuli‐responsiveness. These findings provide novel insights into the preparation of SPNs with enhanced mechanical properties, and promote the development of high‐performance intelligent supramolecular materials.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanghai
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献