Affiliation:
1. Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road CB2 1EW Cambridge UK
2. Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA) Universidade NOVA de Lisboa 2780-157 Oeiras Portugal
Abstract
AbstractFormate production via both CO2 reduction and cellulose oxidation in a solar‐driven process is achieved by a semi‐artificial biohybrid photocatalyst consisting of immobilized formate dehydrogenase on titanium dioxide (TiO2|FDH) producing up to 1.16±0.04 mmolformate g
−1 in 24 hours at 30 °C and 101 kPa under anaerobic conditions. Isotopic labeling experiments with 13C‐labeled substrates support the mechanism of stoichiometric formate formation through both redox half‐reactions. TiO2|FDH was further immobilized on hollow glass microspheres to perform more practical floating photoreforming allowing vertical solar light illumination with optimal light exposure of the photocatalyst to real sunlight. Enzymatic cellulose depolymerization coupled to the floating photoreforming catalyst generates 0.36±0.04 mmolformate per m2 irradiation area after 24 hours. This work demonstrates the synergistic solar‐driven valorization of solid and gaseous waste streams using a biohybrid photoreforming catalyst in aqueous solution and will thus provide inspiration for the development of future semi‐artificial waste‐to‐chemical conversion strategies.
Funder
H2020 European Research Council
Fundação de Apoio à Pesquisa e à Inovação Tecnológica do Estado de Sergipe
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung