Multimodal Engineering of Catalytic Interfaces Confers Multi‐Site Metal‐Organic Framework for Internal Preconcentration and Accelerating Redox Kinetics in Lithium‐Sulfur Batteries

Author:

Lu Haibin1,Zeng Qinghan1,Xu Liangliang2,Xiao Yingbo1,Xie Lin1,Yang Junhua1,Rong Jionghui1,Weng Jingqia1,Zheng Cheng1ORCID,Zhang Qi13ORCID,Huang Shaoming14ORCID

Affiliation:

1. Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices School of Materials and Energy Guangdong University of Technology 510006 Guangzhou China

2. Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) 34141 Daejeon Republic of Korea

3. State key Laboratory of Silicon Materials Zhejiang University 310027 Hangzhou China

4. School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 310024 Hangzhou China

Abstract

AbstractThe development of highly efficient catalysts to address the shuttle effect and sluggish redox kinetics of lithium polysulfides (LiPSs) in lithium‐sulfur batteries (LSBs) remains a formidable challenge. In this study, a series of multi‐site catalytic metal‐organic frameworks (MSC‐MOFs) were elaborated through multimodal molecular engineering to regulate both the reactant diffusion and catalysis processes. MSC‐MOFs were crafted with nanocages featuring collaborative specific adsorption/catalytic interfaces formed by exposed mixed‐valence metal sites and surrounding adsorption sites. This design facilitates internal preconcentration, a coadsorption mechanism, and continuous efficient catalytic conversion toward polysulfides concurrently. Leveraging these attributes, LSBs with an MSC‐MOF‐Ti catalytic interlayer demonstrated a 62 % improvement in discharge capacity and cycling stability. This resulted in achieving a high areal capacity (11.57 mAh cm−2) at a high sulfur loading (9.32 mg cm−2) under lean electrolyte conditions, along with a pouch cell exhibiting an ultra‐high gravimetric energy density of 350.8 Wh kg−1. Lastly, this work introduces a universal strategy for the development of a new class of efficient catalytic MOFs, promoting SRR and suppressing the shuttle effect at the molecular level. The findings shed light on the design of advanced porous catalytic materials for application in high‐energy LSBs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangzhou Municipality

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3