Construct Phenylethanoid Glycosides Harnessing Biosynthetic Networks, Protein Engineering and One‐Pot Multienzyme Cascades

Author:

Yao Mingju1,Wang Haotian1,Wang Zilong1,Song Chenglin1,Sa Xiaolin1,Du Wei2,Ye Min13,Qiao Xue13ORCID

Affiliation:

1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China

2. Agilent Technologies 3 Wangjing North Road Beijing 100102 China

3. Peking University-Yunnan Baiyao International Medical Research Center 38 Xueyuan Road Beijing 100191 China

Abstract

AbstractPhenylethanoid glycosides (PhGs) exhibit a multitude of structural variations linked to diverse pharmacological activities. Assembling various PhGs via multienzyme cascades represents a concise strategy over traditional synthetic methods. However, the challenge lies in identifying a comprehensive set of catalytic enzymes. This study explores biosynthetic PhG reconstruction from natural precursors, aiming to replicate and amplify their structural diversity. We discovered 12 catalytic enzymes, including four novel 6′‐OH glycosyltransferases and three new polyphenol oxidases, revealing the intricate network in PhG biosynthesis. Subsequently, the crystal structure of CmGT3 (2.62 Å) was obtained, guiding the identification of conserved residue 144# as a critical determinant for sugar donor specificity. Engineering this residue in PhG glycosyltransferases (FsGT61, CmGT3, and FsGT6) altered their sugar donor recognition. Finally, a one‐pot multienzyme cascade was established, where the combined action of glycosyltransferases and acyltransferases boosted conversion rates by up to 12.6‐fold. This cascade facilitated the reconstruction of 26 PhGs with conversion rates ranging from 5–100 %, and 20 additional PhGs detectable by mass spectrometry. PhGs with extra glycosyl and hydroxyl modules demonstrated notable liver cell protection. This work not only provides catalytic tools for PhG biosynthesis, but also serves as a proof‐of‐concept for cell‐free enzymatic construction of diverse natural products.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3