Potent Immunomodulators Developed from an Unstable Bacterial Metabolite of Vitamin B2 Biosynthesis

Author:

Mak Jeffrey Y. W.1ORCID,Rivero Ryan J. D.1,Hoang Huy N.1,Lim Xin Yi2,Deng Jieru2,McWilliam Hamish E. G.2,Villadangos Jose A.23,McCluskey James2,Corbett Alexandra J.2,Fairlie David P.1ORCID

Affiliation:

1. Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane, Queensland 4072 Australia

2. Department of Microbiology and Immunology The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity Melbourne, Victoria 3000 Australia

3. Department of Biochemistry and Pharmacology Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Parkville, Victoria 3010 Australia

Abstract

AbstractBacterial synthesis of vitamin B2 generates a by‐product, 5‐(2‐oxopropylideneamino)‐d‐ribityl‐aminouracil (5‐OP‐RU), with potent immunological properties in mammals, but it is rapidly degraded in water. This natural product covalently bonds to the key immunological protein MR1 in the endoplasmic reticulum of antigen presenting cells (APCs), enabling MR1 refolding and trafficking to the cell surface, where it interacts with T cell receptors (TCRs) on mucosal associated invariant T lymphocytes (MAIT cells), activating their immunological and antimicrobial properties. Here, we strategically modify this natural product to understand the molecular basis of its recognition by MR1. This culminated in the discovery of new water‐stable compounds with extremely powerful and distinctive immunological functions. We report their capacity to bind MR1 inside APCs, triggering its expression on the cell surface (EC50 17 nM), and their potent activation (EC50 56 pM) or inhibition (IC50 80 nM) of interacting MAIT cells. We further derivatize compounds with diazirine‐alkyne, biotin, or fluorophore (Cy5 or AF647) labels for detecting, monitoring, and studying cellular MR1. Computer modeling casts new light on the molecular mechanism of activation, revealing that potent activators are first captured in a tyrosine‐ and serine‐lined cleft in MR1 via specific pi‐interactions and H‐bonds, before more tightly attaching via a covalent bond to Lys43 in MR1. This chemical study advances our molecular understanding of how bacterial metabolites are captured by MR1, influence cell surface expression of MR1, interact with T cells to induce immunity, and offers novel clues for developing new vaccine adjuvants, immunotherapeutics, and anticancer drugs.

Funder

University of Queensland

Australian Research Council

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3