Postsynthetically Modified Alkoxide‐Exchanged Ni2(OR)2BTDD: Synergistic Interactions of CO2 with Open Metal Sites and Functional Groups

Author:

Yu Sumin1,Kim Namju1,Choe Jong Hyeak1,Kim Hyojin1,Kim Dae Won1,Youn Jeongwon1,Lee Yong Hoon1,Hong Chang Seop1ORCID

Affiliation:

1. Department of Chemistry Korea University Seoul 02841 Republic of Korea

Abstract

AbstractPostsynthetic modifications (PSMs) of metal–organic frameworks (MOFs) play a crucial role in enhancing material performance through open metal site (OMS) functionalization or ligand exchange. However, a significant challenge persists in preserving open metal sites during ligand exchange, as these sites are inherently bound by incoming ligands. In this study, for the first time, we introduced alkoxides by exchanging bridging chloride in Ni2Cl2BTDD (BTDD=bis (1H‐1,2,3,–triazolo [4,5‐b],–[4′,5′‐i]) dibenzo[1,4]dioxin) through PSM. Rietveld refinement of synchrotron X‐ray diffraction data indicated that the alkoxide oxygen atom bridges Ni(II) centers while the OMSs of the MOF are preserved. Due to the synergy of the existing OMS and introduced functional group, the alkoxide‐exchanged MOFs showed CO2 uptakes superior to the pristine MOF. Remarkably, the tert‐butoxide‐substituted Ni_T exhibited a nearly threefold and twofold increase in CO2 uptake compared to Ni2Cl2BTDD at 0.15 and 1 bar, respectively, as well as high water stability relative to the other exchanged frameworks. Furthermore, the Grand Canonical Monte Carlo simulations for Ni_T suggested that CO2 interacts with the OMS and the surrounding methyl groups of tert‐butoxide groups, which is responsible for the enhanced CO2 capacity. This work provides a facile and unique synthetic strategy for realizing a desirable OMS‐incorporating MOF platform through bridging ligand exchange.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3