3D Lead‐Organoselenide‐Halide Perovskites and their Mixed‐Chalcogenide and Mixed‐Halide Alloys

Author:

Li Jiayi1,Wang Yang2,Saha Santanu34,Chen Zhihengyu5,Hofmann Jan5,Misleh Jason1,Chapman Karena W.5,Reimer Jeffrey A.26,Filip Marina R.3,Karunadasa Hemamala I.17ORCID

Affiliation:

1. Department of Chemistry Stanford University Stanford California 94305 United States

2. Department of Chemical and Biomolecular Engineering College of Chemistry UC Berkeley Berkeley California 94720 United States

3. Department of Physics University of Oxford Clarendon Laboratory Parks Road Oxford OX1 3PU United Kingdom

4. Institut de Recherche sur les Ceramiques (IRCER) UMR CNRS 7315 Université de Limoges 12 Rue Atlantis Limoges 87068 France

5. Department of Chemistry Stony Brook University Stony Brook New York 11794 United States

6. Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 United States

7. Stanford Institute for Materials and Energy Sciences (SIMES) SLAC National Accelerator Laboratory Menlo Park California 94025 United States

Abstract

AbstractWe incorporate Se into the 3D halide perovskite framework using the zwitterionic ligand: SeCYS (+NH3(CH2)2Se), which occupies both the X and A+ sites in the prototypical ABX3 perovskite. The new organoselenide‐halide perovskites: (SeCYS)PbX2 (X=Cl, Br) expand upon the recently discovered organosulfide‐halide perovskites. Single‐crystal X‐ray diffraction and pair distribution function analysis reveal the average structures of the organoselenide‐halide perovskites, whereas the local lead coordination environments and their distributions were probed through solid‐state 77Se and 207Pb NMR, complemented by theoretical simulations. Density functional theory calculations illustrate that the band structures of (SeCYS)PbX2 largely resemble those of their S analogs, with similar band dispersion patterns, yet with a considerable band gap decrease. Optical absorbance measurements indeed show band gaps of 2.07 and 1.86 eV for (SeCYS)PbX2 with X=Cl and Br, respectively. We further demonstrate routes to alloying the halides (Cl, Br) and chalcogenides (S, Se) continuously tuning the band gap from 1.86 to 2.31 eV–straddling the ideal range for tandem solar cells or visible‐light photocatalysis. The comprehensive description of the average and local structures, and how they can fine‐tune the band gap and potential trap states, respectively, establishes the foundation for understanding this new perovskite family, which combines solid‐state and organo‐main‐group chemistry.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3