2D Metal/Graphene and 2D Metal/Graphene/Metal Systems for Electrocatalytic Conversion of CO2 to Formic Acid

Author:

Cho Jinwon1,Medina Arturo1,Saih Ines1,Il Choi Ji1,Drexler Matthew1,Goddard William A.2ORCID,Alamgir Faisal M.1ORCID,Jang Seung Soon1ORCID

Affiliation:

1. School of materials Science and Engineering Georgia Institute of Technology 771 Ferst Dr. Atlanta GA 30332–0245 USA

2. Materials and Process Simulation Center California Institute of Technology Pasadena CA 91125 USA

Abstract

AbstractEfficiently transforming CO2 into renewable energy sources is crucial for decarbonization efforts. Formic acid (HCOOH) holds great promise as a hydrogen storage compound due to its high hydrogen density, non‐toxicity, and stability under ambient conditions. However, the electrochemical reduction of CO2 (CO2RR) on conventional carbon black‐supported metal catalysts faces challenges such as low stability through dissolution and agglomeration, as well as suffering from high overpotentials and the necessity to overcome the competitive hydrogen evolution reaction (HER). In this study, we modify the physical/chemical properties of metal surfaces by depositing metal monolayers on graphene (M/G) to create highly active and stable electrocatalysts. Strong covalent bonding between graphene and metal is induced by the hybridization of sp and d orbitals, especially the sharp , , and orbitals of metals near the Fermi level, playing a decisive role. Moreover, charge polarization on graphene in M/G enables the deposition of another thin metallic film, forming metal/graphene/metal (M/G/M) structures. Finally, evaluating overpotentials required for CO2 reduction to HCOOH, CO, and HER, we find that Pd/G, Pt/G/Ag, and Pt/G/Au exhibit excellent activity and selectivity toward HCOOH production. Our novel 2D hybrid catalyst design methodology may offer insights into enhanced electrochemical reactions through the electronic mixing of metal and other p‐block elements.

Funder

U.S. Department of Energy

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3