Affiliation:
1. Department of Chemistry University of Minnesota 207 Pleasant St. SE Minneapolis MN 55455 USA
Abstract
AbstractArynes are fleeting, high‐energy intermediates that undergo myriad trapping reactions by nucleophiles. Their unusual reactivity compared to other electrophiles can spur unexpected mechanistic pathways enroute to the formation of benzenoid products. Herein we explore a particularly unique case of thermally generated arynes reacting with phosphoranes to form helical dibenzothiophenes and ‐selenophenes. Multiple new helical polycyclic aromatic products are reported. DP4+ and X‐ray crystallographic analysis were used in tandem to confirm the structural topologies of selected products and to demonstrate the utility of DP4+ for distinguishing between isomeric polycyclic aromatic compounds. Lastly, we discuss a plausible mechanism consistent with DFT computations that accounts for the product formation; namely, ligand coupling (i.e., reductive elimination) within a hypervalent, pentacarbon‐ligated σ‐phosphorane furnishes the dibenzothio‐ or dibenzoselenophene.
Funder
National Science Foundation
National Cancer Institute