Tuning Binding Strength of Multiple Intermediates towards Efficient pH‐universal Electrocatalytic Hydrogen Evolution by Mo8O26‐NbNxOy Heterocatalysts

Author:

Yang Yang12ORCID,Liu Lijia3,Chen Shuai4,Yan Wenjun4,Zhou Haiqing5,Zhang Xian‐Ming12ORCID,Fan Xiujun26ORCID

Affiliation:

1. College of Materials Science and Engineering College of Chemistry Key Laboratary of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology Taiyuan Shanxi 030024 China

2. Institute of Crystalline Materials Shanxi University Taiyuan Shanxi 030006 China

3. Department of Chemistry University of Western Ontario London Ontario N6 A 5B7 Canada

4. State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 China

5. Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education Department of Physics Hunan Normal University Changsha 410081 China

6. Engineering Research Center of Energy Storage Materials and Devices Ministry of Education School of Chemistry Xi'an Jiaotong University, Xi An Shi Xi'an 710049 China

Abstract

AbstractDeveloping efficient and robust hydrogen evolution reaction (HER) catalysts for scalable and sustainable hydrogen production through electrochemical water splitting is strategic and challenging. Herein, heterogeneous Mo8O26‐NbNxOy supported on N‐doped graphene (defined as Mo8O26‐NbNxOy/NG) is synthesized by controllable hydrothermal reaction and nitridation process. The O‐exposed Mo8O26 clusters covalently confined on NbNxOy nanodomains provide a distinctive interface configuration and appropriate electronic structure, where fully exposed multiple active sites give excellent HER performance beyond commercial Pt/C catalyst in pH‐universal electrolytes. Theoretical studies reveal that the Mo8O26‐NbNxOy interface with electronic reconstruction affords near‐optimal hydrogen adsorption energy and enhanced initial H2O adsorption. Furthermore, the terminal O atoms in Mo8O26 clusters cooperate with Nb atoms to promote the initial H2O adsorption, and subsequently reduce the H2O dissociation energy, accelerating the entire HER kinetics.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3