Enhancing Photocatalytic CO2 Conversion through Oxygen‐Vacancy‐Mediated Topological Phase Transition

Author:

Yang Sudong12,Guo Xu3,Li Xiaoning4ORCID,Wu Tianze4,Zou Longhua1,He Zhiying1,Xu Qing1,Zheng Junjie3,Chen Lin1,Wang Qingyuan23,Xu Zhichuan J.4ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Chengdu University Chengdu 610106 P. R. China

2. College of Architecture and Environment Sichuan University Chengdu 610065 P. R. China

3. School of Mechanical Engineering Chengdu University Chengdu 610106 P. R. China

4. School of Material Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore

Abstract

AbstractWeak adsorption of gas reactants and strong binding of intermediates present a significant challenge for most transition metal oxides, particularly in the realm of CO2 photoreduction. Herein, we demonstrate that the adsorption can be fine‐tuned by phase engineering of oxide catalysts. An oxygen vacancy mediated topological phase transition in Ni‐Co oxide nanowires, supported on a hierarchical graphene aerogel (GA), is observed from a spinel phase to a rock‐salt phase. Such in situ phase transition empowers the Ni‐Co oxide catalyst with a strong internal electric field and the attainment of abundant oxygen vacancies. Among a series of catalysts, the in situ transformed spinel/rock‐salt heterojunction supported on GA stands out for an exceptional photocatalytic CO2 reduction activity and selectivity, yielding an impressive CO production rate of 12.5 mmol g−1 h−1 and high selectivity of 96.5 %. This remarkable performance is a result of the robust interfacial coupling between two topological phases that optimizes the electronic structures through directional charge transfer across interfaces. The phase transition process induces more Co2+ in octahedral site, which can effectively enhance the Co‐O covalency. This synergistic effect balances the surface activation of CO2 molecules and desorption of reaction intermediates, thereby lowering the energetic barrier of the rate‐limiting step.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3