Enhancing Built‐in Electric Fields via Molecular Symmetry Modulation in Supramolecular Photocatalysts for Highly Efficient Photocatalytic Hydrogen Evolution

Author:

Zhu Xiaolin12ORCID,Jia Yihui1,Liu Yuhan3,Xu Jingyi2,He Huarui1,Wang Siyue1,Shao Yang1,Zhai Yaxin3ORCID,Zhu Yongfa2ORCID

Affiliation:

1. Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education) Xi'an Key Laboratory of Polymeric Soft Matter School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China

2. Department of Chemistry Tsinghua University Beijing 100084 P. R. China

3. Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education Department of Physics Hunan Normal University Changsha 410081 P. R. China

Abstract

AbstractNature‐inspired supramolecular self‐assemblies are attractive photocatalysts, but their quantum yields are limited by poor charge separation and transportation. A promising strategy for efficient charge transfer is to enhance the built‐in electric field by symmetry breaking. Herein, an unsymmetric protonation, N‐heterocyclic π‐conjugated anthrazoline‐based supramolecular photocatalyst SA‐DADK‐H+ was developed. The unsymmetric protonation breaks the initial structural symmetry of DADK, resulting in ca. 50‐fold increase in the molecular dipole, and facilitates efficient charge separation and transfer within SA‐DADK‐H+. The protonation process also creates numerous active sites for H2O adsorption, and serves as crucial proton relays, significantly improving the photocatalytic efficiency. Remarkably, SA‐DADK‐H+ exhibits an outstanding hydrogen evolution rate of 278.2 mmol g−1 h−1 and a remarkable apparent quantum efficiency of 25.1 % at 450 nm, placing it among the state‐of‐the‐art performances in organic semiconductor photocatalysts. Furthermore, the versatility of the unsymmetric protonation approach has been successfully applied to four other photocatalysts, enhancing their photocatalytic performance by 39 to 533 times. These findings highlight the considerable potential of unsymmetric protonation induced symmetry breaking strategy in tailoring supramolecular photocatalysts for efficient solar‐to‐fuel production.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3