Near‐Full‐Spectrum Emission Realized in a Single Lead Halide Perovskite across the Visible‐Light Region

Author:

An Lian‐Cai1ORCID,Li Zi‐Ying2,Azeem Muhammad23,Li Wei2ORCID,Qin Yan3ORCID,Gao Fei‐Fei4ORCID,Han Song‐De1ORCID,Wang Guo‐Ming1ORCID,Bu Xian‐He2ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering Qingdao University Qingdao 266071 China

2. School of Materials Science and Engineering Smart Sensing Interdisciplinary Science Center Nankai University & TKL of Metal and Molecule Based Material Chemistry Tianjin 300350 China

3. School of Physics Huazhong University of Science and Technology Wuhan 430074 China

4. Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education) & School of Chemistry and Materials Science Heilongjiang University Harbin 150080 China

Abstract

AbstractThe engineering of tunable photoluminescence (PL) in single materials with a full‐spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near‐full‐spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single‐component two‐dimensional (2D) hybrid lead halide perovskite, (ETA)2PbBr4 (ETA+=(HO)(CH2)2NH3+), is reported, achieved through high‐pressure treatment. A pressure‐induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the band gap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N−H⋅⋅⋅Br and O−H⋅⋅⋅Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red‐shifted PL emissions, leading to the near‐full‐spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3