Predicting Temperature‐Dependent Activity Coefficients at Infinite Dilution Using Tensor Completion

Author:

Damay Julie1ORCID,Ryzhakov Gleb2,Jirasek Fabian3ORCID,Hasse Hans3,Oseledets Ivan2,Bortz Michael1

Affiliation:

1. Fraunhofer Institute for Industrial Mathematics ITWM Fraunhofer-Platz 1 67663 Kaiserslautern Germany

2. Center for Artificial Intelligence Technology, Skolkovo Institute of Science and Technology Bolshoy Boulevard 30, bld. 1 121205 Moscow Russia

3. TU Kaiserslautern Laboratory of Engineering Thermodynamics (LTD) Erwin-Schrödinger-Straße 44 67663 Kaiserslautern Germany

Abstract

AbstractKnowledge of thermodynamic properties of mixtures is essential in many fields of science and engineering. However, the experimental data is usually scarce, so prediction methods are needed. Matrix completion methods have proven to be very successful in predicting thermodynamic properties of binary mixtures. In this approach, the experimental data is organized in a matrix whose rows and columns correspond to the two components, and whose entries indicate the value of the studied thermodynamic property at fixed conditions. In the present work, we extend the concept to tensor completion methods (TCMs). This allows to account for the variation of the studied property depending on the chosen conditions. The feasibility is demonstrated by applying a TCM to predict activity coefficients at infinite dilution. The third dimension of the tensor is used to describe the influence of the temperature. The TCM is shown to yield better predictions than the well‐established UNIFAC method. Furthermore, the proposed TCM is able to learn and unveil the physical law describing the temperature dependence of activity coefficients from the scarce experimental mixture data only.

Funder

Bundesministerium für Wirtschaft und Energie

Carl-Zeiss-Stiftung

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3