Optimizing of heat transfer and flow characteristics within a roughened solar air heater duct with compound turbulators

Author:

Al‐Chlaihawi Kadhim1ORCID,Alyas Bahjat Hassan2,Abdullah Banan Najim2

Affiliation:

1. Department of Mechanical Engineering University of Al‐Qadisiyah Al Diwaniyah Al‐Qadisiyah 58001 Iraq

2. Northern Technical University Technical Engineering College‐Mosul Mosul Iraq

Abstract

AbstractThermal systems for solar air heating have been widely used in both industrial and residential contexts, and are essential for converting and recovering solar energy. Thermal performance in solar air heaters (SAHs) can be improved through the repetitive application of artificial roughness to the surfaces. This research work includes a numerical evaluation of SAH performance with artificial rough surfaces made up of combined transverse trapezoidal ribs and chamfered grooves. The ANSYS Fluent software version 2023 R1 was used to simulate SAH with varying relative roughness pitch (), relative roughness heights (), and Reynolds number (). The RNG model was chosen to forecast an enhancement in Nusselt number (), friction factor (), and thermohydraulic performance factor (TPF) for the proposed roughness. Out of multiple roughness parameters analyzed, it was determined that the compound turbulator with and , were the most effective. The TPF for this scenario was determined to be 2.12 at . Finally, a numerical based empirical correlations for and in terms of Re, , and were developed.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3