A security‐enhanced equipment predictive maintenance solution for the ETO manufacturing

Author:

Cao Xiangyu1ORCID,Jing Zhengjun2ORCID,Zhao Xiaorong2,Xu Xiaolong1

Affiliation:

1. School of Mechanical Engineering Jiangsu University of Technology Changzhou Jiangsu China

2. School of Computer Engineering Jiangsu University of Technology Changzhou Jiangsu China

Abstract

SummaryWith the rapid advancement of intelligent manufacturing, ensuring equipment safety has become a crucial prerequisite for enterprise production. In the engineer‐to‐order (ETO) production mode, characterized by diverse equipment types and frequent adjustments in production lines, equipment maintenance has become increasingly complex. Traditional maintenance plans are no longer adequate to meet the evolving demands of equipment maintenance. This paper proposes a security‐enhanced predictive maintenance scheme specifically designed for ETO‐type production equipment. The scheme utilizes industrial Internet of Things (IIoT) technology to monitor machines and equipment, constructs prediction models using machine learning methods, and reinforces the security of the prediction system through adoption of a decentralized architecture with blockchain distributed storage. In this experiment, six supervised learning models were compared, and it was found that the model based on the random forest algorithm achieved an outstanding accuracy rate of 98.88%. Furthermore, the average total response time for generating predictions within the system is 2.0 s, demonstrating a performance suitable for practical equipment maintenance applications.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3