Soil microbial activity profiles associated with organic compost fertilizers in an urban garden

Author:

Zeiner Carolyn A.1ORCID,Kisch Maria N.1,Lynch Ethan D.1,Shrestha Paliza1,Small Gaston E.1ORCID

Affiliation:

1. Department of Biology University of St. Thomas Saint Paul Minnesota USA

Abstract

AbstractBiological soil health is recognized as an important component of sustainable agriculture due to microbial biomineralization of nutrients. However, soil health can be difficult to assess consistently across urban agricultural systems due to diverse land use histories, soil heterogeneity, and lack of mechanistic links to agricultural management practices (e.g., recycled compost addition) and crop outcomes. In this study, we characterized soil microbial activity profiles in an urban agriculture system in Minnesota, USA, including microbial abundance, soil respiration, extracellular enzyme activity, and crop yield. Garden plots were fertilized with recycled organic compost (either manure or municipal) at high or low rates (ranging from 2.6 to 39 tons ha−1) targeted to crop N and P demands. Control plots received inorganic fertilizer or no fertilizer. We found that a high application rate of manure compost supported 6–10x higher basal respiration than municipal compost or inorganic fertilizer. Enzyme activity data demonstrated that soil microbial communities exhibited unique profiles of biochemical function that varied among fertilizers of different compositions. Microbial biochemical function predicted 50% of the variability in bell pepper (Capsicum annuum) yield, while soil microbial community size alone was a poor predictor of yield. Yield was highest in plots fertilized with municipal compost, outperforming inorganic fertilizer by threefold. High‐yield plots exhibited higher ratios of N to P enzyme activity compared to those with lower yield. Our findings demonstrate that “more is better” may not necessarily be true regarding soil microorganisms in biological soil health, and that measures of soil microbial biochemical function may be more important.

Funder

National Science Foundation

University of St. Thomas

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3