Innovative utilization of cell membrane‐coated nanoparticles in precision cancer therapy

Author:

He Yiling1,Zhang Shuquan234,She Yaoguang5,Liu Zhaoshan6,Zhu Yalan1,Cheng Qinzhen1,Ji Xiaoyuan7ORCID

Affiliation:

1. Department of Pharmacy Jinhua Municipal Central Hospital Jinhua Zhejiang China

2. Department of Orthopedics Integrated Chinese and Western Medicine Hospital Tianjin University Tianjin China

3. Department of Orthopedics Tianjin Nankai Hospital Tianjin China

4. Department of Orthopedics Tianjin Hospital of Integrated Chinese and Western Medicine Tianjin China

5. Department of General Surgery First Medical Center Chinese People's Liberation Army (PLA) General Hospital Beijing China

6. Laboratory of Immune Cell Biology Center for Cancer Research National Cancer Institute National Institutes of Health Bethesda Maryland USA

7. Academy of Medical Engineering and Translational Medicine Medical College Tianjin University Tianjin China

Abstract

AbstractCell membrane‐coated nanoparticles (CMNPs) have recently emerged as a promising platform for cancer therapy. By encapsulating therapeutic agents within a cell membrane‐derived coating, these nanoparticles combine the advantages of synthetic nanoparticles and natural cell membranes. This review provides a comprehensive overview of the recent advancements in utilizing CMNPs as effective drug delivery vehicles for cancer therapy. The synthesis and fabrication methods of CMNPs are comprehensively discussed. Various techniques, such as extrusion, sonication, and self‐assembly, are employed to coat synthetic nanoparticles with cell membranes derived from different cell types. The cell membrane coating enables biocompatibility, reducing the risk of an immune response and enhancing the stability of the nanoparticles in the bloodstream. Moreover, functionalization strategies for CMNPs, primarily chemical modification, genetic engineering, and external stimuli, are highlighted. The presence of specific cell surface markers on the coated membrane allows targeted drug delivery to cancer cells and maximizes therapeutic efficacy. Preclinical studies utilizing CMNPs for cancer therapy demonstrated the successful delivery of various therapeutic agents, such as chemotherapeutic drugs, nucleic acids, and immunotherapeutic agents, using CMNPs. Furthermore, the article explores the future directions and challenges of this technology while offering insights into its clinical potential.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3