Physics‐informed reinforcement learning for optimal control of nonlinear systems

Author:

Wang Yujia1,Wu Zhe1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering National University of Singapore Singapore

Abstract

AbstractThis article proposes a model‐free framework to solve the optimal control problem with an infinite‐horizon performance function for nonlinear systems with input constraints. Specifically, two Physics‐Informed Neural Networks (PINNs) that incorporate the knowledge of the Lyapunov stability theorem and the convergence conditions of the policy iteration algorithm are utilized to approximate the value function and control policy, respectively. Then, a Reinforcement Learning (RL) algorithm that does not require any first‐principles or data‐driven models of nonlinear systems is developed to iteratively learn a nearly optimal control policy. Furthermore, we provide a rigorous theoretical analysis showing the conditions that ensure the stability of closed‐loop systems with the control policy learned by RL and guarantee the convergence of the iteration algorithm. Finally, the proposed Physics‐Informed Reinforcement Learning (PIRL) method is applied to a chemical process example to demonstrate its effectiveness.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3