CNN / Bi‐LSTM‐based deep learning algorithm for classification of power quality disturbances by using spectrogram images
Author:
Affiliation:
1. Department of Computer Engineering Bandırma Onyedi Eylül University Bandırma Turkey
2. Department of Electrical Engineering Bandırma Onyedi Eylül University Bandırma Turkey
Funder
British Association for Psychopharmacology
Publisher
Hindawi Limited
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/2050-7038.13204
Reference48 articles.
1. A real‐time classification method of power quality disturbances;Zhang M;Electr Power Syst Res,2011
2. A combined deep learning application for short term load forecasting
3. Power quality disturbance detection and classification using signal processing and soft computing techniques: A comprehensive review
4. An independent component analysis classification for complex power quality disturbances with sparse auto encoder features;Shi X;IEEE Access,2019
5. Power quality disturbance classification based on time‐frequency domain multi‐feature and decision tree;Zhao W;Prot Control Mod Power Syst,2019
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An automatic recognition method for power quality disturbances based on CAB-Net;Journal of Physics: Conference Series;2024-08-01
2. Prediction of the creeping of AFC based on fuzzy reasoning and Bi-LSTM fusion iteration;Artificial Intelligence Review;2024-05-16
3. Online piano learning game design method: Piano music style recognition based on CRNNH;Entertainment Computing;2024-05
4. Power quality monitoring in electric grid integrating offshore wind energy: A review;Renewable and Sustainable Energy Reviews;2024-03
5. Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue;Energies;2024-01-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3