Enhanced high‐temperature electrical properties and charge dynamics of inorganic/organic silicone elastomer nanocomposites via nanostructure grafting and molecular trap construction

Author:

Wang Qilong12ORCID,Tanaka Yasuhiro2,Miyake Hiroaki2,Endo Kazuki2,An Yeongguk2,Du Haosen2,Chen Xiangrong1,Paramane Ashish3

Affiliation:

1. College of Electrical Engineering Zhejiang University Hangzhou China

2. Measurement and Electric Machine Control Laboratory Tokyo City University Tokyo Japan

3. Electrical Engineering Department National Institute of Technology Silchar India

Abstract

AbstractThis study introduces a novel strategy to enhance the high‐temperature electrical performance of the silicone elastomer (SE), while ensuring control over its thermal and mechanical properties for SiC device packaging insulation application. For the same, the ultra‐low‐content inorganic/organic SE nanocomposites are prepared and tested (at room temperature and 150°C) by grafting polyhedral oligomeric silsesquioxane (POSS) nanofillers and doping organic semiconductors. It is found that grafting POSS nanofillers enhances the SE's thermal and mechanical properties. Moreover, doping the grafted SE with different organic semiconductors (ITIC, PCBM, and NTCDA) further improves its electrical properties and charge dynamics at 150°C. The optimal doping content for ITIC, PCBM, and NTCDA is found to be 0.05, 0.10, and 0.15 wt%, respectively. Among these, NTCDA exhibits superior electrical performance at 150°C. Particularly, compared to pure SE, NTCDA doping and POSS grafting reduce the electrical conductivity by an order of magnitude and increase the breakdown strength, charge hopping activation energy, and trap energy level by 65.5%, 0.20 eV and 0.73 eV, respectively. This study finds that organic semiconductors outperform nanostructures in inhibiting electron injection and immobilizing free electrons at high temperatures.Highlights Nano‐POSS grafting enhances material properties by reinforced molecular chains. Charge dynamics is studied by space charge and current integrated charge at HT. Organic semiconductors improve electrical properties and charge dynamics at HT. Organic semiconductors outperform nanofillers in immobilizing electrons at HT. The ideal organic semiconductor doping level correlates with its energy gap.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3