Impact of low levels of silver, zinc and copper nanoparticles on bacterial removal and potential synergy in water treatment applications

Author:

Alherek May1,Basu Onita D1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering Carleton University Ottawa Canada

Abstract

AbstractBACKGROUNDPoint‐of‐use filtration units often incorporate silver as a disinfection aid. However, system performance and robustness may be increased by considering co‐application of additional transition metal nanoparticles (NPs) to support treated water disinfection. In this paper, the use of silver (Ag), zinc (Zn) and copper (Cu) NPs as disinfectants within drinking water applications was explored. Disinfection efficiency against E. coli was investigated over 72 h in batch‐phase experiments using NP concentrations within or lower than drinking water limits. Concentration ranges of the NPs were from 0 to 200 μg L−1, reflecting typical concentration reports for Ag in similar applications. Samples were examined with respect to pH and two water types. The effect of co‐application of NPs was assessed for potential synergy using the Bliss model, which compares individual treatment performance to combined treatment results.RESULTSDisinfection efficacy when applying NPs individually was Ag > Cu > Zn with, for instance, complete removal (≥3 log) of E. coli observed with 50 ppb Ag at 24 h, 1 log removal by Cu and no removal achieved with application of Zn. The Bliss model analysis demonstrated the co‐application of NPs resulted in synergistic behavior with the combinations. Zn‐containing combinations (Ag–Zn and Cu–Zn) were significantly more synergistic than the Ag–Cu combination.CONCLUSIONSLow‐level (0–200 ppb) concentrations of Ag, Cu and Zn demonstrated effective bacterial control and disinfection for E. coli under various water quality scenarios. In particular, co‐application of transition metal NPs increased system robustness and synergy, demonstrating potential for disinfection with water treatment applications. © 2023 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).

Funder

Carleton University

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Pollution,Waste Management and Disposal,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3