Investigating palaeodune orientations and contemporary wind regimes in Southeast Kazakhstan using a semi‐automated mapping framework

Author:

Nowatzki Maike123ORCID,Fitzsimmons Kathryn E.23,Harder Hartwig4,Rosner Hans‐Joachim2

Affiliation:

1. School of Geography and the Environment University of Oxford Oxford UK

2. Department of Geoscience University of Tübingen Tübingen Germany

3. Research Group for Terrestrial Palaeoclimates Max Planck Institute for Chemistry Mainz Germany

4. Department of Atmospheric Chemistry Max Planck Institute for Chemistry Mainz Germany

Abstract

AbstractThe Ili‐Balkhash region in southeastern Kazakhstan hosts morphologically diverse dormant desert dune fields and presents an interesting opportunity for geomorphological and palaeoenvironmental studies. Because the morphology of aeolian dunes is primarily driven by wind dynamics, the dormant dunes in the study area may reflect past wind conditions. We assess their concurrence with modern ERA5 wind data to test whether there has been a change in wind regime since the dunes' last phase of activity. Our approach includes dune mapping, the quantification of dune orientations, the modelling of modern bedform orientations, and optically stimulated luminescence (OSL) dating for temporal context. The centrepiece of our methodological contribution is a novel semi‐automated mapping workflow using geographic object‐based image analysis (GEOBIA) and machine learning (ML) on Sentinel‐2 satellite imagery. Within the scope of a case study, we map dune fields in the Ili‐Balkhash region and quantify dune orientations. We further apply the maximum gross bedform‐normal transport (MGBNT) concept to model bedform orientations matching modern wind regimes for each of the sites. We find that strong winds show better alignment with observed dune orientations than wind regimes comprising all wind speeds. Furthermore, bedform orientations in some of our study sites, namely those that are located in the open plain southeast of Lake Balkhash, do not reflect modern winds. The divergence between dune orientations and wind regime suggests changes in local wind dynamics since the dune fields' last phase of activity.

Funder

Clarendon Fund

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3