Affiliation:
1. Center of Advanced Optoelectronic Materials College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310018 China
2. Department of Materials University of Oxford Oxford OX1 3PH UK
3. School of Chemistry and Chemical Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
4. Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials College of Physics and Energy Fujian Normal University Fuzhou 350117 China
Abstract
AbstractEu2+‐doped phosphors have attracted the great attention of researchers in the past decade. However, Eu2+ dopant in inorganic hosts often suffers from the self‐oxidation effect, therefore causing the attenuated emission intensity and quantum efficiency. In this regard, developing Eu2+ doped phosphors with the prohibited self‐oxidation effect of Eu2+ and increased thermal stability is urgently required. Herein, an innovative cyan‐light emitting Li2CaSiO4:Eu2+/Eu3+, Lu3+ (LCSO) phosphor is designed. Both experimental results and theoretical calculations demonstrate that adding Lu3+ restricts the self‐oxidation of Eu2+ into Eu3+, thus improving the emission of Eu2+. Meanwhile, the Lu3+ introduction brings out excellent thermal stability. Finally, an efficient WLED with a color temperature (CCT) of 4573 K and a high color rendering index (Ra) of 84.2 is obtained using the as‐prepared phosphor due to the perfect compensation of the cyan light. As the introduction of Lu3+ improves the stability of Eu2+, a much greater difference in PL decay rate between Eu2+ and Eu3+ in LCSO is reached, thereby improving their sensitivity in temperature sensing. The strategy of Lu3+ introduction for prohibiting the self‐oxidation of Eu2+ for efficient and stable Eu2+ emission may stimulate some new ideas in designing high‐performance phosphors for more diverse applications.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献