Manipulating the Exciton Dynamics in a MoS2/WS2 Heterobilayer with a Si/Au Nanocavity

Author:

Liu Shimei1ORCID,Li Shulei2,Mao Yuheng1,Lin Zhenxu1,Panmai Mingcheng3,Li Guang‐Can1,Zhou Lidan4,Lan Sheng1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices School of Information and Optoelectronic Science and Engineering South China Normal University Guangzhou 510006 P. R. China

2. School of Optoelectronic Engineering Guangdong Polytechnic Normal University Guangzhou 510665 P. R. China

3. School of Electrical and Electronic Engineering Nanyang Technological University Singapore 639798 Singapore

4. State Key Laboratory of Optoelectronic Materials and Technologies School of Electronics and Information Technology Sun Yat‐sen University Guangzhou 51006 P. R. China

Abstract

AbstractManipulating the exciton dynamics in a heterobilayer (HB) composed of two transition metal dichalcogenides (TMDCs) is important in the development of photonic/plasmonic devices based on TMDC HBs. Here, the realization of such a manipulation in a MoS2/WS2 HB is reported by using a Si/Au hybrid nanocavity composed of a Si nanoparticle and an Au film, which is manifested in the modification in the photoluminescence (PL) of the embedded MoS2/WS2 HB. It is shown that a transition from PL quenching to PL enhancement can be achieved by adjusting the diameter of the Si nanoparticle, which modifies the plasmon resonance supported by the Si/Au nanocavity. More interestingly, it is demonstrated that the enhancement factor can be manipulated by shifting the exciton/trion resonance close to or far away from the plasmon resonance by simply increasing the laser power. It is revealed that the manipulation is realized by effectively controlling the strain and Purcell effects induced by the Si/Au nanocavity. A PL enhancement factor as large as ≈187 in the MoS2/WS2 HB at a high laser power is observed. The findings suggest the potential applications of dielectric‐metal hybrid nanocavities in the manipulation of the exciton dynamics in TMDC HBs and the development of novel plasmonic devices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3