An Inversely Designed Reconstructive Spectrometer on SiN Platform

Author:

Li Ang12ORCID,Bao Feixia1,Wu Yifan1,Wang Chang1,He Jijun1,Pan Shilong1

Affiliation:

1. Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education Nanjing University of Aeronautics and Astronautics Nanjing 210016 China

2. Key Lab of Modern Optical Technologies of Education Ministry of China Soochow University Jiangsu China

Abstract

AbstractReconstructive spectrometers, which leverage the compressive sensing technique and computational algorithm, are promising solutions for high‐performance integrated spectrometers. Among the various options for realizing reconstructive spectrometers, stratified waveguide filters (SWFs) have emerged as a particularly attractive choice due to their ultra‐compact size and high performance. However, previous demonstrations of SWFs on silicon substrates have suffered from suboptimal and non‐reproducible spectrometer performance due to the brute‐force random design approach. In this paper, applying a bio‐inspired inverse design algorithm to the system level of multiple correlated SWFs is proposed. The algorithm allows for the precise and optimized design of the SWFs in order for higher spectral resolution of each SWF and lower spectral cross‐correlations between any two SWFs, overcoming the limitations of previous methods. The effectiveness of this approach is demonstrated by implementing a reconstructive spectrometer on a silicon nitride (SiN) platform, which is more thermally stable and can support a wider optical range than silicon.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Shandong University

Soochow University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3