Energy Dissipation Engineering for Widely Tunable (1.2–2.1 µm) Optical Parametric Oscillation in Integrated Chalcogenide Microresonators

Author:

Xia Di12,Zhao Jiaxin12,Cheng Huanjie12,Wang Zifu12,Huang Jianteng12,Luo Liyang12,Liu Dong12,Yang Shuixian12,Zhang Bin12ORCID,Li Zhaohui123

Affiliation:

1. Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems School of Electrical and Information Technology Sun Yat‐sen University Guangzhou 510275 China

2. Key Laboratory of Optoelectronic Materials and Technologies Sun Yat‐sen University Guangzhou 510275 China

3. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Zhuhai 519000 China

Abstract

AbstractWidely separated optical parametric oscillation (OPO) in an integrated Kerr microresonator offers a compact, highly coherent, and low‐power laser source, accessing previously inaccessible frequencies. Yet, extending the sideband of OPO from telecom to beyond 2 µm is still challenged by competing nonlinear effects and reduced Q factors at these extended wavelengths. In this work, efficient signal‐idler separations reaching 99 THz (1250–2130 nm) are demonstrated with a modest 8.1 mW threshold power, leveraging the heightened nonlinearity of GeSbS chalcogenide glass in the integrated microresonators. By pioneering energy dissipation control via pulley couplers, competing nonlinear phenomena are effectively suppressed, enabling the first demonstration of a widely separated OPO (wOPO) in the anomalous dispersion regime. Moreover, the wOPO features a robust existence region across a variety of device geometries, resilient to microresonator width alterations of up to 300 nm. These findings underscore the potential of integrated microresonators to adeptly bridge the telecom band to the MIR spectrum, achieving this transition with minimal power and controlled nonlinearities, a promising avenue for contemporary integrated photonics platforms utilizing heterogeneously integrated pump lasers.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3