Affiliation:
1. Key Laboratory of Photonic Control Technology Ministry of Education, Tsinghua University Beijing 100084 China
2. State Key Laboratory of Precision Measurement Technology and Instruments Department of Precision Instruments Tsinghua University Beijing 100084 China
Abstract
AbstractThe realization of beam self‐cleaning in a cavity is more challenging than in the outside cavity. The peak power of intracavity pulses needs to be high to reach the threshold of beam self‐cleaning, which usually relies on additional diffraction grating to compress pulses in a positive‐dispersion cavity. Here, it is first experimentally and numerically demonstrated that self‐cleaning can be observed in an all‐fiber high peak‐power Er‐doped spatiotemporal mode‐locked (STML) laser at all‐negative‐dispersion. Through the nonlinear compression of graded‐index multimode fiber, the pulses are compressed along with the emergence of beam self‐cleaning. Besides, the inherent disorder of multimode fiber accelerates the self‐cleaning process. The intracavity pulse energy of ≈13 nJ with a pulse duration of 734.5 fs is derived under a highly multimode excitation, with an output pulse energy of 2.33 nJ. The pulse energy is a nearly fourfold improvement over the previous report in all‐fiber STML at 1.5 m. Temporal‐dependent characteristics and nonlinear polarization dynamics of beam self‐cleaning are also experimentally uncovered. It is demonstrated that the STML fiber laser will enable new insights into nonlinear pulse propagation in cavities and related applications.
Funder
National Natural Science Foundation of China
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献