Balanced Charge‐Carrier Transport and Defect Passivation in Far‐Red Perovskite Light‐Emitting Diodes

Author:

Wang Shuxin1,Liu Yongjie1,Liu Chenwei1,Shao Wenlong1,Wang Chen1,Xiao Meng1,Chen Guoyi1,Yu Zhiqiu1,Tao Chen1,Ke Weijun1,Fang Guojia1ORCID

Affiliation:

1. Key Lab of Artificial Micro‐ and Nano‐Structures of Ministry of Education of China School of Physics and Technology Wuhan University Wuhan 430072 P. R. China

Abstract

AbstractPerovskites are promising light emitters that can cover broad‐range emissions over the entire visible spectrum. However, few studies have focused on uncommon wavebands, such as far‐red emission of 700–750 nm that has broad applications in biology, horticulture lighting, optogenetics, etc. Here, a strategy is demonstrated to achieve high‐performance far‐red perovskite light‐emitting diodes (PeLEDs) through antisolvent engineering. First, 1,3,5‐tris(1‐phenyl‐1H‐benzimidazole‐2‐yl) benzene (TPBi) is introduced into n‐i‐p perovskite matrix not only to passivate the defects but also to balance carrier mobility as well as adjust the energy level alignment between perovskite and the electron transport layer. The n‐type TPBi can prevent hole carriers’ movements in perovskite light emitters and enhance electron injection. Furthermore, the incorporation of TPBi uplifts the Fermi energy level of perovskites by 0.32 eV as well as diminishes the conduction band offset between zinc oxide (ZnO) and the perovskite emitters, hence alleviating the accumulation of charges at the interface. Consequently, the PeLEDs with TPBi‐modified perovskite emitters show an invariable far‐red emission peak at around 735 nm with a champion external quantum efficiency of 14.22%. This work makes up the far‐red emission of perovskite light‐emitting devices and boosts latent capacity of PeLEDs for future application.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3