Affiliation:
1. State Key Laboratory of Luminescent Materials and Devices, and School of Materials Science and Engineering South China University of Technology Guangzhou 510641 P. R. China
2. School of Physics and Optoelectronic South China University of Technology Guangzhou 510641 P. R. China
3. School of Materials Science and Engineering Zhejiang University Hangzhou 310058 P. R. China
4. State Key Laboratory of Modern Optical Instrumentation, and College of Optical Science and Engineering Zhejiang University Hangzhou 310058 P. R. China
Abstract
AbstractThe fabrication of multicolor luminescent glass with simultaneous controlling of the distribution of emission colors within a monolithic medium has been a tremendous challenge, which, however, could be attractive for diverse photonic applications from optical storage to information encryption. Here, a space‐selective doping method based on a stereolithographic technique is designed, enabling the control of the doping domain of the active luminescence ions, such as Eu3+, Ce3+, Tb3+, and Pr3+, in 3D‐printed single silica glasses. The printed glass shows intense multicolor luminescence, and the interface between the two doping areas is invisible under natural light. By using this technique, multicolor luminescent glass with pre‐designed emission color distribution is fabricated, which enables facile and nondestructive decryption strategies based on photoluminescence under controlled excitation conditions. Besides, the extending of this strategy by using a femtosecond laser for photopolymerization dramatically improves the printing resolution down to the few‐micron scale, enabling the multi‐dimensional optical storage and encryption in miniaturized glass items. This work not only delineates the potential applications of multicolor luminescent glass for multi‐dimensional anti‐counterfeiting and information storage, but also opens up new avenues for prospective applications in sensing, lasers, and displays based on glasses with spatially engineered optical responses.
Funder
National Natural Science Foundation of China
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献