Neural‐Optic Co‐Designed Polarization‐Multiplexed Metalens for Compact Computational Spectral Imaging

Author:

Zhang Qiangbo1,Lin Peicheng2,Wang Chang1,Zhang Yang1,Yu Zeqing1,Liu Xinyu1,Lu Yanqing2,Xu Ting2,Zheng Zhenrong1ORCID

Affiliation:

1. College of Optical Science and Engineering Zhejiang University Hangzhou 310027 China

2. National Laboratory of Solid‐State Microstructures Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences Nanjing University Nanjing 210093 China

Abstract

AbstractIn the expanding fields of mobile technology and augmented reality, there is a growing demand for compact, high‐fidelity spectral imaging systems. Traditional spectral imaging techniques face limitations due to their size and complexity. Diffractive optical elements (DOEs), although helpful in reducing size, primarily modulate the phase of light. Here, an end‐to‐end computational spectral imaging framework based on polarization‐multiplexed metalens is introduced. A distinguishing feature of this approach lies in its capacity to simultaneously modulate orthogonal polarization channels. When harnessed in conjunction with a neural network, it facilitates the attainment of high‐fidelity spectral reconstruction. Importantly, the framework is intrinsically fully differentiable, a feature that permits the joint optimization of both the metalens structure and the parameters governing the neural network. The experimental results presented herein validate the exceptional spatial‐spectral reconstruction performance, underscoring the efficacy of this system in practical, real‐world scenarios. This innovative approach transcends the traditional boundaries separating hardware and software in the realm of computational imaging and holds the promise of substantially propelling the miniaturization of spectral imaging systems.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3