Application of Resonant Plasmonic Bowtie Nanoantennas for Optically‐Assisted Diffusiophoretic Trapping of Extracellular Vesicles and Nanoparticles

Author:

Anyika Theodore12ORCID,Hong Ikjun12,Zhu Guodong12,Ndukaife Justus C.1234ORCID

Affiliation:

1. Department of Electrical and Computer Engineering Vanderbilt University 2301 Vanderbilt Place PMB 350106 Nashville Tennessee 37235 USA

2. Vanderbilt Institute of Nanoscale Science and Engineering 2301 Vanderbilt Place PMB 350106 Nashville Tennessee 37235 USA

3. Department of Mechanical Engineering Vanderbilt University 2301 Vanderbilt Place PMB 350106 Nashville Tennessee 37235 USA

4. Vanderbilt Center for Extracellular Vesicle Research 2220 Pierce Avenue Preston Research building Nashville Tennessee 37232 USA

Abstract

AbstractPlasmonic antennas leveraging localized surface plasmon resonances (LSPR) hold a significant premise for efficiently trapping nanoscale particles at low power levels. However, their effectiveness is hindered by photothermal effects that arise with metallic nanoparticles, leading to decreased stability of trapped particles. To address this limitation, a hybrid approach that combines depletion attraction and photothermal effects inherent in plasmonic structures is proposed, capitalizing on thermally induced concentration gradients. Through the thermophoretic depletion of polyethylene glycol (PEG) molecules around plasmonic hotspots, sharp concentration gradients are created, enabling precise localization of nanoscopic particles through a synergistic effect with diffusiophoretic forces. Our experiments successfully demonstrate the ability to trap and dynamically manipulate small extracellular vesicles and 100 nm polystyrene beads, showcasing the platform's potential for assembly at the nanoscale. Remarkably, this method maintains stable trapping performance even at a laser power of . The demonstration of stable trapping of small extracellular vesicles showcases the compatibility of this platform with bio species. This study introduces a promising avenue for the precise and efficient manipulation of nanoscale particles, with wide‐ranging implications in nanotechnology, biophysics, and nanomedicine. This research opens new opportunities for advancing nanoscale particle studies and applications, ushering in a new era of nanoscale manipulation techniques.

Funder

National Institute of General Medical Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3