Affiliation:
1. Department of Optoelectronic Engineering Jinan University Guangzhou 510632 China
2. Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications Guangzhou 510632 China
3. Guangdong Provincial Engineering Research Center of Crystal and Laser Technology Guangzhou 510632 China
Abstract
AbstractSpatially or temporally structured light has attracted considerable attention for its intriguing beam characteristics, which have found extensive applications in classical and quantum optics. Extending structured light from macroscale and microscale to nanometricscale brings more prospects both for fundamental and applied science. However, sculpting light at the subwavelength scale remains a challenge since its transverse structure is fragile in the nanometric scale. Here a novelholography for arbitrary light sculpting at the subwavelength scale is demonstrated. A wave phenomenon of diffractive focusing from an amplitude‐only nanometric (50‐nm‐thick) film is introduced, and use of the induced high‐spatial‐frequency waves as carriers to encode information of an object is considered. Using this technique, nanometric holograms are designed and fabricated for generating the well‐defined eigen modes including the zero‐order Bessel beam, vortex beam, vector beam, Airy beam, as well as an arbitrary light pattern, with feature sizes on the deep‐subwavelength scale. The broadband performance of the hologram is examined, and a white‐light nondiffracting beam at the deep‐subwavelength scale is realized. This demonstration paves a way toward on‐demand light sculpting at the nanometric scale, which may find applications such as optical super‐resolution imaging, nanoparticle manipulation, and precise measurements.
Funder
Special Project for Research and Development in Key areas of Guangdong Province
Guangzhou Municipal Science and Technology Project
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials