On‐Demand Subwavelength‐Scale Light Sculpting Using Nanometric Holograms

Author:

Zhang Xiliang12,Hu Yanwen12,Zhang Xin12,Li Zhen123,Chen Zhenqiang123,Fu Shenhe123ORCID

Affiliation:

1. Department of Optoelectronic Engineering Jinan University Guangzhou 510632 China

2. Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications Guangzhou 510632 China

3. Guangdong Provincial Engineering Research Center of Crystal and Laser Technology Guangzhou 510632 China

Abstract

AbstractSpatially or temporally structured light has attracted considerable attention for its intriguing beam characteristics, which have found extensive applications in classical and quantum optics. Extending structured light from macroscale and microscale to nanometricscale brings more prospects both for fundamental and applied science. However, sculpting light at the subwavelength scale remains a challenge since its transverse structure is fragile in the nanometric scale. Here a novelholography for arbitrary light sculpting at the subwavelength scale is demonstrated. A wave phenomenon of diffractive focusing from an amplitude‐only nanometric (50‐nm‐thick) film is introduced, and use of the induced high‐spatial‐frequency waves as carriers to encode information of an object is considered. Using this technique, nanometric holograms are designed and fabricated for generating the well‐defined eigen modes including the zero‐order Bessel beam, vortex beam, vector beam, Airy beam, as well as an arbitrary light pattern, with feature sizes on the deep‐subwavelength scale. The broadband performance of the hologram is examined, and a white‐light nondiffracting beam at the deep‐subwavelength scale is realized. This demonstration paves a way toward on‐demand light sculpting at the nanometric scale, which may find applications such as optical super‐resolution imaging, nanoparticle manipulation, and precise measurements.

Funder

Special Project for Research and Development in Key areas of Guangdong Province

Guangzhou Municipal Science and Technology Project

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3