Airy‐Like Hyperbolic Shear Polaritons in High Symmetry van der Waals Crystals

Author:

Bai Yihua1,Zhang Qing1,Zhang Tan2,Lv Haoran1,Yan Jiadian1,Wang Jiandong1,Fu Shenhe3,Hu Guangwei4,Qiu Cheng‐Wei2,Yang Yuanjie1ORCID

Affiliation:

1. School of Physics University of Electronic Science and Technology of China Chengdu 611731 China

2. Department of Electrical and Computer Engineering National University of Singapore Singapore 117583 Singapore

3. Department of Optoelectronic Engineering Jinan University Guangzhou 510632 China

4. School of Electrical and Electronic Engineering Nanyang Technological University Singapore 639798 Singapore

Abstract

AbstractControlling light at the nanoscale by exploiting ultra‐confined polaritons—hybrid light and matter waves—in various van der Waals (vdW) materials empowers unique opportunities for many nanophotonic on‐chip technologies. So far, mainstream approaches have relied on interfacial techniques (e.g., refractive optics, meta‐optics, and moire engineering) to manipulate the polariton wavefront. Here, it is proposed that orbital angular momentum (OAM) of incident light can offer a new degree of freedom to structure vdW polaritons. With vortex excitations, a new class of accelerating polariton waves is observed—Airy‐like hyperbolic phonon polaritons (PhPs) in high‐symmetry orthorhombic vdW crystal α‐MoO3. In analogous to the well‐known Airy beams in free space, such Airy‐like PhPs also exhibit self‐accelerating, nonspreading, and self‐healing characteristics. Interestingly, the helical phase gradient of the vortex beam leads to asymmetry excitation of polaritons, as a result, the Airy‐like PhPs possess asymmetric propagation features even with a symmetric mode, analogous to the asymmetry hyperbolic shear polaritons in low‐symmetry crystals. The finding highlights the potential of OAM to manipulate polaritons in vdW materials, which can be further extended into a variety of applications such as active structured polaritonic devices.

Funder

National Natural Science Foundation of China

Sichuan Province Science and Technology Support Program

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3