Diffractive Neural Network on a 3D Photonic Device for Spatial Mode Bases Mapping

Author:

Wang Jue12,Wang Kangrui12ORCID,Cai Chengkun12,Fu Tianhao12,Wang Jian12

Affiliation:

1. Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan Hubei 430074 China

2. Optics Valley Laboratory Wuhan Hubei 430074 China

Abstract

AbstractMode‐division multiplexing (MDM) techniques based on various spatial mode bases are of great significance in satisfying the demand for efficient capacity scaling. With the development of diverse MDM systems, the seamless connection and integration between them are particularly important. In this scenario, a laudable goal would be to implement flexible spatial mode bases mapping. To break the barrier between different MDM systems, a compact 3D photonic device based on diffractive neural network (DNN) is presented for mode bases mapping, transforming orbital angular momentum (OAM) modes into linearly polarized (LP) modes. Through simulations and experiments, a four‐layer optical neural network mode mapper (ONNMM) is successfully demonstrated, exhibiting its capability of mapping five orthogonal spatial modes between OAM and LP mode bases simultaneously. The ONNMM shows a vision for grooming MDM optical communications and interconnects, as well as other emerging applications enabled by intelligent 3D integrated compact devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3