Excitation of Epsilon‐Near‐Zero Mode in Optical Fiber

Author:

Yang Jingyi12ORCID,Minn Khant2,Anopchenko Aleksei12ORCID,Gurung Sudip12ORCID,Lee Ho Wai Howard123ORCID

Affiliation:

1. Department of Physics & Astronomy University of California Irvine CA 92697 USA

2. Department of Physics Baylor University Waco TX 76798 USA

3. Beckman Laser Institute and Medical Clinic University of California Irvine CA 92697 USA

Abstract

AbstractExperimental excitation of a highly confined epsilon‐near‐zero (ENZ) mode in a side‐polished optical fiber coated with a deep subwavelength thick layer of aluminum‐doped zinc oxide (AZO) is reported. The uniform AZO layer on the fiber is fabricated by atomic layer deposition technique and optimized to exhibit close‐to‐zero permittivity at the near‐infrared wavelength. Highly polarization‐ and wavelength‐dependent transmission with strong resonance strength up to 25 dB is observed in a 30‐nm ENZ‐coated fiber that is 17 mm long. Different from the excitation of the ENZ mode in a planar conducting oxide thin film, the hybrid ENZ mode can be excited via direct phase matching between the fundamental mode of the fiber and the ENZ mode supported by the AZO thin film. The hybrid ENZ mode in the fiber exhibits a relatively long propagation/light–matter interaction length which is a few orders of magnitude longer than those on the planar ENZ substrates. It is further shown that the hybrid resonance in the ENZ fiber can be actively tuned through the refractive index of surrounding medium and the large ENZ's nonlinearity. These ENZ‐optical fibers serve as emerging in‐fiber optical devices, such as advanced in‐fiber ultrafast optical switches/modulators, mode‐locked fiber lasers, and in‐fiber optical gas/biomolecule sensors.

Funder

Air Force Office of Scientific Research

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3