Parametrically Driven Inertial Sensing in Chip‐Scale Optomechanical Cavities at the Thermodynamical Limits with Extended Dynamic Range

Author:

Flor Flores Jaime Gonzalo1ORCID,Yerebakan Talha1,Wang Wenting1,Yu Mingbin2,Kwong Dim‐Lee2,Matsko Andrey3,Wong Chee Wei1

Affiliation:

1. Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory University of California Los Angeles CA 90095 USA

2. Institute of Microelectronics A*STAR Singapore 117865 Singapore

3. Jet Propulsion Laboratory (JPL) California Institute of Technology Pasadena CA 91109 USA

Abstract

AbstractRecent scientific and technological advances have enabled the detection of gravitational waves, autonomous driving, and the proposal of a communications network on the Moon (Lunar Internet or LunaNet). These efforts are based on the measurement of minute displacements and their corresponding force transduction, which enables acceleration, velocity, and position determination for navigation. State‐of‐the‐art accelerometers use capacitive or piezoresistive techniques and micro‐electromechanical systems (MEMS) via integrated circuit (IC) technologies to drive transducers and convert their output for electric readout. In recent years, laser optomechanical transduction and readout have enabled highly sensitive detection of motional displacement. Here the theoretical framework is further examined for the novel mechanical frequency readout technique of optomechanical transduction when the sensor is driven into oscillation mode. Theoretical and physical agreements are demonstrated, and the most relevant performance parameters are characterized by a device with a 1.5 mg Hz−1 acceleration sensitivity, a 2.5 fm Hz−1/2 displacement resolution corresponding to a 17.02 µg Hz−1/2 force‐equivalent acceleration, and a 5.91 Hz nW−1 power sensitivity, at the thermodynamical limits. In addition, a novel technique is presented for dynamic range extension while maintaining the precision sensing sensitivity. This inertial accelerometer is integrated on‐chip and enabled for packaging, with a laser‐detuning‐enabled approach.

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference44 articles.

1. Observation of Gravitational Waves from a Binary Black Hole Merger

2. D.Israel K.Mauldin C.Roberts J.Mitchell A.Pilkkinen L. V.Cooper M.Johnson S.Christe C.Gramling in2020 IEEE Aerospace Conf. Big Sky MT2020 up pp.1–14.

3. A MEMS piezoelectric in-plane resonant accelerometer based on aluminum nitride with two-stage microleverage mechanism

4. S.Shin A.Daruwalla M.Gong A.Wen F.Ayazi in2019 20th Int. Conf. on Solid‐State Sensors Actuators and Microsystems Berlin Germany 2019 pp.503–506.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3