Transmission Efficiency Limit for Nonlocal Metalenses

Author:

Li Shiyu1,Hsu Chia Wei1ORCID

Affiliation:

1. Ming Hsieh Department of Electrical and Computer Engineering University of Southern California Los Angeles California 90089 USA

Abstract

AbstractThe rapidly advancing capabilities in nanophotonic design are enabling complex functionalities limited mainly by physical bounds. The efficiency of transmission is a major consideration, but its ultimate limit remains unknown for most systems. This study introduces a matrix formalism that puts a fundamental bound on the channel‐averaged transmission efficiency of any passive multi‐channel optical system based only on energy conservation and the desired functionality, independent of the interior structure and material composition. Applying this formalism to diffraction‐limited nonlocal metalenses with a wide field of view shows that the transmission efficiency must decrease with the numerical aperture for the commonly adopted designs with equal entrance and output aperture diameters. It also shows that reducing the size of the entrance aperture can raise the efficiency bound. This study reveals a fundamental limit on the transmission efficiency as well as provides guidance for the design of high‐efficiency multi‐channel optical systems.

Funder

National Science Foundation

Sony

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3