Cell‐instructive biomaterials in tissue engineering and regenerative medicine

Author:

Adhikari Bikram1ORCID,Stager Michael A.2,Krebs Melissa D.12

Affiliation:

1. Quantitative Biosciences and Engineering Colorado School of Mines Golden Colorado USA

2. Chemical and Biological Engineering Colorado School of Mines Golden Colorado USA

Abstract

AbstractThe field of biomaterials aims to improve regenerative outcomes or scientific understanding for a wide range of tissue types and ailments. Biomaterials can be fabricated from natural or synthetic sources and display a plethora of mechanical, electrical, and geometrical properties dependent on their desired application. To date, most biomaterial systems designed for eventual translation to the clinic rely on soluble signaling moieties, such as growth factors, to elicit a specific cellular response. However, these soluble factors are often limited by high cost, convoluted synthesis, low stability, and difficulty in regulation, making the translation of these biomaterials systems to clinical or commercial applications a long and arduous process. In response to this, significant effort has been dedicated to researching cell‐directive biomaterials which can signal for specific cell behavior in the absence of soluble factors. Cells of all tissue types have been shown to be innately in tune with their microenvironment, which is a biological phenomenon that can be exploited by researchers to design materials that direct cell behavior based on their intrinsic characteristics. This review will focus on recent developments in biomaterials that direct cell behavior using biomaterial properties such as charge, peptide presentation, and micro‐ or nano‐geometry. These next generation biomaterials could offer significant strides in the development of clinically relevant medical devices which improve our understanding of the cellular microenvironment and enhance patient care in a variety of ailments.

Publisher

Wiley

Subject

Metals and Alloys,Biomedical Engineering,Biomaterials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3