MFF‐Net: Multiscale feature fusion semantic segmentation network for intracranial surgical instruments

Author:

Liu Zhenzhong12,Zheng Laiwang12,Yang Shubin12,Zhong Zichen12,Zhang Guobin12ORCID

Affiliation:

1. Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control School of Mechanical Engineering Tianjin University of Technology Tianjin China

2. National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology) Tianjin China

Abstract

AbstractBackgroundIn robot‐assisted surgery, automatic segmentation of surgical instrument images is crucial for surgical safety. The proposed method addresses challenges in the craniotomy environment, such as occlusion and illumination, through an efficient surgical instrument segmentation network.MethodsThe network uses YOLOv8 as the target detection framework and integrates a semantic segmentation head to achieve detection and segmentation capabilities. A concatenation of multi‐channel feature maps is designed to enhance model generalisation by fusing deep and shallow features. The innovative GBC2f module ensures the lightweight of the network and the ability to capture global information.ResultsExperimental validation of the intracranial glioma surgical instrument dataset shows excellent performance: 94.9% MPA score, 89.9% MIoU value, and 126.6 FPS.ConclusionsAccording to the experimental results, the segmentation model proposed in this study has significant advantages over other state‐of‐the‐art models. This provides a valuable reference for the further development of intelligent surgical robots.

Funder

Tianjin Research Innovation Project for Postgraduate Students

National Key Research and Development Program of China

Publisher

Wiley

Subject

Computer Science Applications,Biophysics,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3