High‐fidelity digital twins: Detecting and localizing weaknesses in structures

Author:

Löhner Rainald1ORCID,Airaudo Facundo1,Antil Harbir2,Wüchner Roland3,Meister Fabian3,Warnakulasuriya Suneth3ORCID

Affiliation:

1. Center for Computational Fluid Dynamics George Mason University Fairfax Virginia USA

2. Center for Mathematics and Artificial Intelligence George Mason University Fairfax Virginia USA

3. Institute for Structural Analysis TU Braunschweig Braunschweig Germany

Abstract

AbstractAn adjoint‐based procedure to determine weaknesses, or, more generally, the material properties of structures is developed and tested. Given a series of load cases and corresponding displacement/strain measurements, the material properties are obtained by minimizing the weighted differences between the measured and computed values. The present paper proposes and tests techniques to minimize the number of load cases and sensors. Several examples show the viability, accuracy and efficiency of the proposed methodology and its potential use for high fidelity digital twins.

Funder

National Science Foundation

Air Force Office of Scientific Research

Office of Naval Research

Publisher

Wiley

Reference31 articles.

1. American Institute of Aeronautics and Astronautics (AIAA) Digital Engineering Integration Committee.Digital twin: definition & value. AIAA and AIA Position Paper; 2020.https://www.aiaa.org/docs/default‐source/uploadedfiles/issues‐and‐advocacy/policy‐papers/digital‐twin‐institute‐position‐paper‐(december‐2020).pdf

2. The location of defects in structures from measurements of natural frequencies

3. Updating of finite element models using vibration tests

4. Damage detection of structures by wavelet analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3